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Phase jumps 

By M. S. HOWE 
Imperial College, London 

(Received 1 December 1967) 

An earlier paper (Howe 1967) considered a non-linear theory of open-channel 
steady flow of deep water past a slowly modulated wavy wall. The wave pattern 
on the free surface of the water was obtained as the solution of a stably posed 
elliptic Cauchy problem, the main feature of the solution being the appearance 
of a ‘shock ’ across which there is an abrupt change of phase. Such phase jumps 
can occur in a wide range of similar problems, but the advantage of the present 
case is that it is rather well suited to experimental investigation. This paper is 
therefore a lead-in to the more general problem of phase jumps, and uses the 
principle of conservation of energy in conjunction with the earlier solution to 
predict the possible position of the discontinuity on the free surface of the water. 
The possible nature of the free surface in the vicinity of the phase jump is also 
discussed (figure 4). This is a region where the width of the wave troughs becomes 
dramatically shorter than that of the neighbouring troughs. An approximate 
method of determining the line along which the phase jump occurs, not depending 
on a knowledge of the solution of the Cauchy problem, is also presented. 

1. Introduction 
In  an earlier paper (Howe 1967) a non-linear theory of steady flow of deep 

water past a slowly modulated wavy wall was considered. The discussion was 
based on a theory proposed by Whitham (1965a, b )  which describes the disper- 
sion of slowly varying wave trains of large amplitude. Briefly, the method con- 
sists in first supposing the wave train to be locally a close approximation to an 
exactly periodic solution of the full non-linear equations of motion, from which 
an average Lagrangian is calculated in terms of the wave parameters. The 
dispersion equations governing the slow variation of these parameters are then 
obtained by an application of Hamilton’s Principle. 

Previous calculations of the dispersion of large amplitude wave-groups 
(Lighthill 1965, 1967; Whitham 1967a) had shown that in the particular case in 
which the dispersion equations formed an elliptic system a, certain instability in 
the solutions of the initial value problems arose. Experimental confirmation of 
such instability, in the case of the development in time and space of a one- 
dimensional finite amplitude wave-group on deep water, has been reported by 
Benjamin & Feir (1967). However, because of the experimental difficulties 
involved in making accurate observations of moving wave trains, it appeared 
desirable to do a non-linear calculation for a case in which the wave pattern is 
steady. Such steady wave patterns could in principle be observed from a ship 
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moving at  constant velocity relative to still water but, because of difficulties 
mentioned by Howe (1967), it  is not immediately clear how to apply the Whit- 
ham theory to the general ship-wave problem. The simpler problem of steady 
flow of deep water past a wavy wall of locally sinusoidal shape, whose ampli- 
tude decays slowly from a, central maximum, was therefore considered, as a 
possible introduction to the ship-wave case. As explained in some detail in the 
earlier paper, the dispersion equation describing the wave-field on the free sur- 
face of the water is of elliptic type for moderate wall amplitudes, provided the 
wavelength of the wall is not too large. 

The result of the earlier calculation is shown in figure 1, which is a map of the 
curves of constant phase on the free surface of the water (corresponding to the 
wave-crests and troughs). The x-axis is taken from left to right along the mean 
surface of the wall, the origin being at the point of maximum wall amplitude, and 
the positive direction of the y-axis is outwards from the wall. All distances and 
wavelengths are quoted with respect to U2/g as the unit of length, where U is the 
undisturbed free stream speed which is in the positive s-direction. The amplitude 
of the wall is exaggerated by a factor of 8 in the figure. The wave pattern was 
obtained as the solution of an initial value problem, the wave-number K and 
the phase 0 being prescribed along the line y = 1. 

It can be seen from the figure that there is a region of the (2, y)-plane within 
which the solution is indeterminate. This will be referred to as the ‘gap region’. 
It is argued in the earlier paper that this is a manifestation of a shock-like 
phenomenon, across which there are discontinuous jumps in the wave-number 
and phase, the direction and spacing of the wave-crests changing abruptly 
through the shock. The shock, or ‘phase jump ’, forms largely as a result of ampli- 
tude dispersion, whereby the larger amplitude waves have the larger phase 
velocity. The present paper aims to complete the solution of the problem by 
predicting the position of the discontinuity using the solution obtained and 
shown in figure 1 on either side of the shock. This is described in $ 3, and involves 
an application of the principle of conservation of energy. Out of all possible 
positions of the shock only one ensures that this is not violated. 

Comparison with the analogous case in gas dynamics suggests the possibility 
of error in the solution which is being used behind (i.e. to the right of) the gap 
region. Such errors are third order effects in gas dynamics, and can often be 
neglected in the case of weak shocks; however, misleading results may be 
obtained in the strong shock case. Hence, the possible need for the solution 
behind the gap region to be modified, with possible consequential changes in 
shock position, must not be overlooked. 

The present calculation assumes therefore that the shock is sufficiently weak 
for the method to be valid. Support for this view comes from the observations 
of Benjamin & E’eir (1967), which indicate that the instability of finite ampli- 
tude waves does not result in turbulent dissipation of energy, but rather a re- 
distribution of the energy in the spectrum of the wave-group. 

The relevant conservation equations are derived in the next section. In  $ 3  
the predicted position of the shock is found, and the predicted amount of phase 
jump across the shock is used to estimate the difference in the number of wave- 
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crests entering and leaving the shock. The possible form of the free surface in the 
neighbourhood of the phase jump is obtained by taking cross-sections of the 
free surface at right-angles to the shock. Observations on this would form a 
rather precise test of the theory. Finally, in $ 4  a crude physical argument is 
given which interestingly enough enables one to predict rather well the line 
along which the phase jump lies, although the method does not give its location 
on the line correctly. 

2. Conservation equations and the dispersion-equation 
Let Y(K,  w )  denote the average Lagrangian per unit horizontal area for finite 

amplitude waves on deep water, where K = ( I ,  m) is the wave-number and w the 
time frequency. The system is assumed to be non-dissipative, since in an almost 
uniform wave train velocity gradients are smoothly varying functions of position 
and so the effect of viscosity may be ignored. In  this case Lighthill (1967) has 
given an explicit expression for 9 approximately valid for all possible ampli- 
tudes, and this has been used in the computations of Howe (1967). 

The wave-field is described in terms of a phase function 8(xi, t )  (where t is the 
time), which is smoothly varying and takes successive integral multiple values 
of 277 on successive wave-crests. In  terms of 8 the wave-number and frequency are 
given by 

Hamilton’s Principle, 6 ,EP(q,  w ) d x d t  = 0, 

then leads to the Euler equation 

ss 
which, as pointed out by Whitham (1967b), is the conservation equation re- 
presenting the balance between changes in the space-like adiabatic invariant 
YK. and the time-like adiabatic invariant 9&. Other conservation equations may 
be derived from (2.2) by applying Noether’s Theorem (Bogoliubov & Shirkov 
1957, p. 20). In  particular the invariance o f 2  with respect to arbitrary time and 
space translations lead respectively to the energy equation 

a a 
-(w2w-=9)--(w2qK,) at axi = 0 

and the momentum equation, 

The definitions (2.1) give the two further conservation equations 

a@ a K f  
- + - = 0, curl K = 0. 
ax, at 

(2.4) 

The first of (2.6) represents the conservation of wave-crests, and the second says 
that wave-crests originate and terminate only on the boundaries of the wave- 



12
 

12
 

X
 

F
IG

U
R

E
 

1.
 T

he
 s

ur
fa

ce
 w

av
e 

p
at

te
rn

 p
ro

du
ce

d 
b

y
 s

te
ad

y
 f

lo
w

 a
t 

sp
ee

d 
U

 p
as

t 
th

e 
w

av
y 

w
al

l 

, 12
 

12
 

X
 

F
IG

U
R

E
 

2.
 T

he
 p

os
it

io
n 

of
 t

h
e 

ph
as

e 
ju

m
p
 O

Q
 a

s 
de

te
rm

in
ed

 b
y 

th
e 

pr
in

ci
pl

e 
of

 c
on

se
rv

at
io

n 
of

 e
ne

rg
y.

 A
B

C
D

A
 is

 a
 t

yp
ic

al
 c

on
to

ur
 

us
cd

 t
o

 p
re

di
ct

 t
h

e
P

,,
 a

n
d

 A
E

F
A

 is
 a

 t
yp

ic
al

 t
es

t-
in

te
gr

al
 c

on
to

ur
. 



Phase jumps 783 

field. However, (2.3) and (2.6) are valid only in those regions where the wave- 
field varies slowly on a scale of wavelength, whereas the energy and momentum 
equations (2.4), (2.5) are valid under all circumstances when the average Lag- 
rangian 9 is replaced by the exact Lagrangian density. 

The wavy wall problem concerns the steady-state distribution of waves on the 
free surface, and it is shown in the earlier paper how Lighthill’s Lagrangian is 
expressed in terms of axes fixed relative to the wall, with respect to which the 
wave pattern is steady, so that in (2.1) and (2.6) w = 0 and a/at = 0. The dis- 
persion equation obtained from (2.1) and (2.3) becomes in this case 

a(& m) Ox, + %(Z, m)Bx, + c(Z, m) O,, = 0, (2.7) 

where a(Z, m) = ql, b(Z, m) = qm, c(Z, m) = Smm. 

For the particular wall considered (2.7) is a quasi-linear elliptic equation, and 
the associated initial value problem was solved by the method of imaginary 
characteristics, the data 1, m, 6 being specified along the line y = 1. 

3. The phase jump in the wavy wall problem 
In  this section the position of the phase jump in the wavy wall problem is 

predicted using the data obtained in the earlier paper on either side of the gap 
region. Discontinuous jumps across a shock are usually treated in terms of the 
physical conservation equations of the problem. Whitham (1967 b)  has pointed 
out that in non-linear problems of the present type there are always more con- 
servation equations than the number of required shock conditions. Essentially 
one must distinguish between those conservation equations which remain 
valid in an un-averaged form, i.e. through the shock, and those which are true 
only for slowly varying wave trains. Thus, for example, it would be wrong to 
choose the wave conservation equations (2.6). However, the energy and mo- 
mentum equations (2.4) and (2.5) may be used. 

Consider in particular the energy conservation equation 

a a 
- ( w Z w  -9) - - ((fJ$PKKi) = 0. 
at axi 

Here 9 = 9(~,,  w )  is the Lighthill average Lagrangian, and is in terms of axes 
fixed relative to the mean motion of the water. In  order that (3.1) may be written 
in terms of axes fixed relative to the wall, for which the wave pattern is steady, 
one first computes the derivatives gW and gKi in (3.1) and then replaces w by 
- Ul and a/at by &(a/ax,) where U, = ( U ,  0 )  is the undisturbed stream velocity, 
to obtain, a a ui - axi [ uz9w +9] - - ax, [ UZ gKi] = 0. 

Thus about any contour S in the (x, y)-plane 

(3.3) 

where n, is the outward normal of S and ds the curvilinear length element. 
Equation (3.3) represents the balance of the energy fluxes into and out of S. 
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The position of the phase jump is determined by choosing a suitable sequence 
of contours S,  which pass through the gap region of the wavy wall solution. 
Since the solution is known on either side of this region one then extrapolates 
the integrand along the contour from either side of the gap region to a point P,, 
say. At P, there will be a discontinuous jump in the value of the integrand, and 
the precise location of P, on the contour is adjusted to make the integral about 
the whole contour vanish. One may note that an integral relation of the form 
(3.3) can also be derived from the momentum equation (2.4). The same pro- 
cedure applied in this case would lead to the same prediction of the position of 

Figure 2 reproduces the solution of the wavy wall problem and shows also the 
position of the phase jump as determined by the above method. A typical 
integration contour is also shown, consisting of a segment AB from x = - 10 to 
+ 10 of the initial line y = 1, a portion BC of the 'output curve' from the point 
(10 , l )  (see $4), a transversal CD cutting the shock approximately at  right- 
angles, and the segment DA of the output curve from ( -  10 , l ) .  Before attempt- 
ing to find the position of the jump, the reliability of the numerical solution 
obtained by Howe (1967) in satisfying (3.3) was examined by integrating around 
several closed contours not passing through the gap region, e.g., AEPA. The 
data available from the solution gave the wave-number K to four decimal places, 
and when used in the test integrals the latter were found to  differ from zero only 
in the fifth decimal place (the contributions along AE and EB' separately were 
of order 1); in no case was the error in excess of & 0.00005. 

The sequence of contours S, was generated by moving the component CD 
of the contour shown in figure 2 along AD and BC. The points P, determined in 
this way were found to lie closely along a straight line, and the location of the 
phase jump in figure 2 is on a segment of the line 

Pn. 

y = 0 . 3 3 7 2 ~  + 1.4875, (3.4) 

which is the least squares fit to the points P,. The standard deviation of the fit 
is 0.012. The tip of the shock is rather ill-defined, but is approximately at  the 
point 0 where x = 9.17, and data for the line (3.4) extends as far as x = 18.61. 

The difference in the number of wave-crests which enter the segment OQ of 
the shock from the left (1) and which leave it on the right (2) is given by 

271 [K].dS. (3.5) 

The integration is taken along the discontinuity, and the square bracket denotes 
the jump in wave-number. Since K = grad8, and 6, = 62 at 0, 

The variation of 2nS with distance s of Q along the jump from 0 is shown in 
figure 3, for possible future comparison with experiment. 

One may illustrate the possible nature of the free surface of the water in the 
neighbourhood of the phase jump by plotting the surface elevation along a line 
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such as CD in figure 2, cutting the jump a t  right angles. The free surface elevation 
is obtained from the solution of the earlier paper by substituting the amplitude 
and phase into the Stokes expansion for finite amplitude surface waves. Possible 
forms for the surface in the gap region may then be inferred by graphical inter- 
polation between the curves of the known elevation on either side. By taking a 
large number of such cross-sections and plotting them on the same diagram a 
picture of the surface which seems almost three-dimensional is obtained. 

3 

9 2 -  

$ 
“0 
k 
m 1 -  

0 I I I I I 
2 

FIGURE 3. 2n8 radians is the increase in phase in passing across the discontinuity in the 
positive x-direction at a distance s from the tip 0 of the phase jump. 

This has been done in figure 4. Each wavy curve represents a cross-section of 
the free surface (magnified by a factor of 5 )  along a line such as CD in figure 2. 
Such a line is taken as the abscissa and the positive direction of the ordinate is 
in the sense OQ of figure 2. Thus figure 4 should be viewed by looking from the 
left along the direction of the phase jump line, which is also shown. With respect 
to this orientation the left-hand tip of each curve occurs where the wave energy 
is very small and so lies approximately at  the undisturbed level of the free sur- 
face. The broken-line segments indicate a possible form for the free surface in 
the gap region. 

The effect of the phase jump is rather dramatically emphasized by the shorten- 
ing of the widths of those troughs shown entering the jump from below. Comment 
may also be made on the change in form of the crest which passes just to the left 
of the jump origin. The wave is of characteristic trochoidal section which becomes 
more peaked as it nears the tip of the jump. However, this tendency towards 
breaking is apparently arrested by the appearance of the jump which effectively 
acts as a means of transfer of wave energy from that crest, which moves on above 
the jump, to the waves in the region beneath the jump, so that the wave crest 
emerges on the other side much reduced in amplitude. 

4. An approximate method for locating the line along which the jump lies 
This discussion of the wavy wall problem is conveniently concluded by a 

consideration of an approximate method of predicting the line along which the 
50 Fluid Mech. 32 
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phase jump is formed, which gives rather more physical insight than the purely 
numerical approach. 

Consider the dispersion equation (2.7) 

ae,, + 2bB,, + CB,, = 0. 

adyz - 2bdxdy + cdxz = 0, 

The characteristics of this equation are given by 

or, setting A = J(ac - b2),  and noting that the equation is elliptic, by 

dx b .A 
= - I f : % - - .  

d y c c  

Remembering that the dispersion equation was originally solved by analytic 
continuation into the complex x-plane, (4.1) states that, if y is real, the solution 
a t  any point P, say, in the real (x, y)-plane is determined by the two conjugate 
characteristics through I' originating at  two conjugate points in that complex 
x-plane which meets the real (2, y)-plane along y = 1. Data at  these points is 
obtained by keeping the real part of x fixed and analytically continuing the data 
from the initial line I' (i.e. y = 1) into the complex x-plane. At P these two 
characteristics define a plane element cutting the real (x, y)-plane along the 
curve dxldy = b/c. 

As a first approximation (4.2) may be regarded as defining the rays along 
which energy is propagated. Indeed in the case of infinitesimal amplitude they 
do degenerate into the steady-state analogue of the group velocity lines, since 

For finite amplitudes the neglect of the imaginary part of (4.1) implies that the 
propagation of changes along the approximate 'rays' (4.2) would be to some 
extent blurred. 

Suppose now that the wall has constant amplitude. The solution of the 
dispersion equation is then trivially a plane wave, and the energy rays (4.2) 
become the family of parallel straight lines 

b 
x = - y+ const. (4.3) 

C 

Here b/c is a function of K which is constant. But when the amplitude of the wall 
varies, K will vary along r. Provided that this variation is slow enough, in the 
sense of Whitham's approximation, the energy rays would be expected to remain 
straight for some distance from r, but the slope blc would vary in accordance 
with the variation of K along the initial line. It is conceivable that under these 
circumstances the family (4.3) would envelope a caustic along which the solution 
of the dispersion equation would be indeterminate. Physically one then expects 
to find a shock in the solution. 

These ideas may be illustrated by referring to the results of the wavy wall 
calculation. The dispersion equation was solved by reducing it to a set of five 
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first order partial differential equations in which the unknowns (x, y, 1, m, 0 )  
were to be determined in terms of co-ordinates ( 5 , ~ )  defined by 

( = - - r  a+P =--- a-P 
2 ’  2i ’ 

where a, p are the complex characteristic co-ordinates of the dispersion equation. 
The method involves continuing the initial data into the complex 7-plane, where 
if 7 = h + icr, h is held fixed at  A,, say. In  the (() @)-plane the system of equations 
is hyperbolic and is soluble by the method of characteristics. At cr = 0 the solu- 
tion so obtained reduces to the solution in the real (5, q)-plane along the straight 
line 7 = A,. A complete covering of any portion of the real (5, y)-plane is obtained 
by repeating this procedure over a complete interval of A,. 

Since the solution of the system of equations corresponds to a constant real 
value of 7, i t  follows that the image curve in the (x, y)-plane of the straight line 
7 = A, satisfies 

where, as described in the earlier paper, 

da-dp = 0) (4.4) 

x = h o ,  y =  1, on a+p=O. (4.5) 

This set of ‘output curves’ obtained in the wavy wall calculation is shown in 
figure 5. They are straight except near the region where breakdown occurs. 
Because of this it is valid to approximate to each by giving to K the value it has 
where it cuts the boundary y = 1, and to  solve (4.4) on the assumption that K 
is constant. This approximation readily yields the solution 

(4.6) 

the constant being determined by the starting-point on y = 1. Thus under these 
circumstances the output curves correspond to the energy rays (4.3). 

x = ( b / c ) y  + const., 

8 8 

Y 

4 4 

0 0 
-12 -8 -4 4 8 12 16 20 24 28 

X 

FIGURE 6. The family of ‘energy rays’ given by equation (4.3). The effect of finite ampli- 
tude is to blur the propagation of changes along these rays. 

Figure 5 reveals that the output curves of the wavy wall calculation do in 
fact tend to form an envelope along the front of the gap region, This may be 
compared with figure 6 in which are drawn the energy rays (4.3) originating from 
the same points on y = 1 as the output curves. The energy rays form a cusp 
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at (23.37, 9.21). This is quite a lot farther from the initial line than the start of 
the envelope in figure 5. 

However, the line (3.4) along which the phase jump occurs is rather well 
determined by that along which the cusp forms in the case of the energy rays. 
Taking our definition of the latter line as that ray which touches the cusp at  its 
tip, one obtains for its equation, 

9 = 0 * 3 2 3 5 ~ +  1.6609. (4.7) 

This is negligibly different from (3.4) within the range x = 10,20 of validity of 
the phase-jump calculation. Thus the blurring of the energy rays may alter the 
distance to formation of the discontinuity but apparently does not alter the 
direction in which the phase-jump is formed. 
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